\qquad
Unit 4 test: Take Home Justification
Date Assigned Date due \qquad

This is the take home portion of the test. You will be given the same questions in class to justify with a written statement. These questions are very involved and you should spend a significant amount of time justifying your results.

Directions:

- For each of the following problems solve completely and show all of your work (Please attach any additional work to this sheet to turn in).
- Provide a written justification in the space provided using complete sentences.
1.) Plutonium-241 (Pu-241) is valuable to many countries around the world for its civilian and military purposes and currently has a price approaching $\$ 4000 / \mathrm{g}$ (to compare, gold has a price of $\$ 38.70$). Countries often barter and trade rare materials to countries where supplies are depleted or nonexistent. You have been hired to conduct an analysis on how the value of the plutonium a facility has will change over time due to inflation (natural increases in price due to economic growth) and the natural decay of the material.
a.) Construct a function using the decay model $A=A_{0} e^{k t}$ to describe the decay of Pu-241 over time.
b.) If the United States has a constant inflation of 2.5% yearly for the foreseeable future (continuous growth) construct a function that will describe how the price of an item in the United States will change over time.
c.) Using both the functions that you have described, suppose a facility has a current supply of 10 kg of Pu-241 today, how much Pu-241 will be left in October of 2041 and what will be the value of their supply of Pu-241 at that time?
d.) The same company has asked you write a single function describing this relationship so that they can utilize it at any time in the future. Describe a single function that could be used to predict how much value Pu-241 will have in the future.
2.) Chemists define the acidity or alkalinity of a substance according to the formula $\mathrm{pH}=-\log [\mathrm{H}+]$ where $[\mathrm{H}+]$ is the hydrogen ion concentration, measured in moles per liter. Solutions with a pH value of less than 7 are acidic; solutions with a pH value of greater than 7 are basic; solutions with a pH of 7 (such as pure water) are neutral. Information about pH has to be included with a product on a Material Safety Data Sheet (MSDS) and must be readily within any workplace that uses the product.
a.) The Clorox Company has hired you to evaluate a new product to determine some basic information about it. After testing you determine that the product has a hydrogen lon concentration of approximately $1.7 \times$ $10^{-13} \mathrm{mols} / \mathrm{L}$. Find the pH of this new substance and determine whether it is acidic or basic.
b.) During testing the company wants to market the new product as a product that is safe for use around children. The company wants you to research materials with a similar pH , and write a brief synopsis of your findings with any recommendations you have about the safety of the product. Would you recommend this product for use around children based upon the pH ? Why or why not? Cite any sources you use on a separate sheet.
\qquad
c.) The company wants to offer a diluted solution as a 'gentler' version of their new product. The company would like this product to have a pH of 7.6 or below. Determine what ratio of their current product and pure water (pH of 7) is required to make 1 L of the new product.

