LESSON 12-4

Practice B

Hyperbolas

Find the constant difference for a hyperbola with the given foci and point on the hyperbola.

1.
$$F_1(0, 11), F_2(0, -11), P(0, 7)$$

2.
$$F_1(-9, 0)$$
, $F_2(9, 0)$, $P(-8, 0)$

Write an equation in standard form for each hyperbola with center (0, 0).

Find the vertices, co-vertices, and asymptotes of each hyperbola, and then graph.

7.
$$\frac{x^2}{196} - \frac{y^2}{49} = 1$$

8.
$$\frac{(y-4)^2}{36} - \frac{x^2}{81} = 1$$

Solve.

9. A comet's path as it approaches the sun is modeled by one branch of the $-\frac{x^2}{39,355}$ = 1, where the sun is at the corresponding focus.

Each unit of the coordinate plane represents one million miles. How close does the comet come to the sun?

e.

Practice B

1. 14

- 2. 16
- 3. $\frac{y^2}{144} \frac{x^2}{256} = 1$ 4. $\frac{x^2}{576} \frac{y^2}{49} = 1$

- 5. $\frac{y^2}{289} \frac{x^2}{1} = 1$ 6. $\frac{x^2}{900} \frac{y^2}{700} = 1$
- 7. Vertices: (14, 0), (-14, 0); co-vertices: (0,
 - 7), (0, -7); asymptotes: $y = \frac{1}{2}x$, $y = -\frac{1}{2}x$

8. Vertices: (0, 10), (0, -2); co-vertices: (9, 4), (-9, 4);

asymptotes:
$$y = \frac{2}{3}x + 4$$
, $y = -\frac{2}{3}x + 4$

9. 167.7 million miles

Practice C

1.
$$\frac{x^2}{64} - \frac{y^2}{4} = 1$$

1.
$$\frac{x^2}{64} - \frac{y^2}{4} = 1$$
 2. $\frac{x^2}{1600} - \frac{y^2}{81} = 1$

3.
$$\frac{y^2}{36} - \frac{(x-5)^2}{1} = 1$$

4.
$$\frac{(x+4)^2}{64} - \frac{(y-2)^2}{36} = 1$$

5.
$$\frac{(y-1)^2}{144} - \frac{(x+2)^2}{25} = 1$$

6. Vertices: (1, -1), (-7, -1); co-vertices: (-3, 2), (-3, -4); asymptotes: y = -1 + $\frac{3}{4}(x+3), y=-1-\frac{3}{4}(x+3)$

7. Vertices: (2, 4), (2, -6); co-vertices: (8, -1), (-4, -1); asymptotes: $y = -1 + \frac{5}{6}(x - 1)$

2),
$$y = -1 - \frac{5}{6}(x-2)$$

- 8. a. (0, 205.99)
 - b. 172.88 million miles

Reteach

1. Horizontally

$$a = 3 b = 2$$

$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$