| Name | Date | Class |  |
|------|------|-------|--|

# 9-3

### LESSON Practice A

## **Arithmetic Sequences and Series**

Determine whether the sequence is arithmetic. If it is, find the common difference. Then find the next term. If the sequence is not arithmetic, write not arithmetic.

- 1. 14, 23, 32, 41, 50, 59, 68, ...
  - a. Find the differences between consecutive terms.
  - b. If the sequence is arithmetic, write the common difference.
  - c. If the sequence is arithmetic, add the common difference to the last term to get the next term.
- 2. 7.1, 10.6, 14.1, 17.6, 21.1, 24.6, ...
  - a. If the sequence is arithmetic, write the common difference.
  - b. If the sequence is arithmetic, find the next term.
- 3. 111, 99, 87, 75, 63, 51, 39, 27, 15, ...
  - a. If the sequence is arithmetic, write the common difference.
  - b. If the sequence is arithmetic, find the next term.
- 4. 2, -4, 6, -8, 10, -12, 14, -16, 18, -20, ...
  - a. If the sequence is arithmetic, write the common difference.
  - b. If the sequence is arithmetic, find the next term.

Find the 11th term of each arithmetic sequence.

- 5. 33, 29, 25, 21, 17, ...
  - a. Find the common difference.
  - b. Substitute the first term for  $a_1$  and the common difference for d in the formula  $a_n = a_1 + (n-1) d$ .
  - c. Simplify.

7. 
$$\frac{2}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{10}{3}, 4, \cdots$$

Write the missing terms of each arithmetic sequence.

- 8. 8.2, \_\_\_, \_\_\_, 23, ...
  - a. Use  $a_n = a_1 + (n-1) d$  to find d, the common difference.
  - b. Use the common difference and the formula to find  $a_2$ ,  $a_3$ , and  $a_4$ .
- 9. 9, , , , , 10, ...
  - a. Identify the common difference.
  - b. Use the common difference to find the missing terms.

3. 1 + 5 + 25 + 125; = 156

4.  $(2^1 + 1) + (2^2 + 1) + (2^3 + 1)$ ; = 3 + 5 + 9 = 17

5.  $[2(3^2) -1] [2(4^2) -1] + [2(5^2) -1]; = 17 + 31 + 49 = 97$ 

6. Quadratic; 9;  $\frac{9(10)(19)}{6}$ ; = 285

7. Constant; 12; 12(6); = 72

8. Linear; 10;  $\frac{10(11)}{2}$ ; = 55

### Challenge

1. 5

2. 3.5

3. 3.178571429

4. 3.162319422

5. 3.16227766

6. 3.16227766

7. 450

8. 165

9.30

10. 15

11. 450 + 165 + 30 + 15 + 660

12. 10 + 35 + 90 + 187 + 338 = 660

13. 1 + 3 + 6 + 10 + 15 = 35

14.  $\sum_{k=1}^{n} \frac{k(k+1)}{2} = \frac{n(n+1)(n+2)}{6}$ 

15.  $\frac{5 \cdot 6 \cdot 7}{6} = 35$ 

## **Problem Solving**

1. a.  $a_k = 4(0.9)^{k-1}$ 

b.  $\sum_{k=1}^{8} 4(0.9)^{k-1}$ 

c. 22.8 mm

2. a.  $a_k = 4(0.9)^{k-1} + \frac{1}{2}$ 

b.  $\sum_{k=1}^{8} 0.5 + 4(0.9)^{k-1}$ 

c. 26.8 mm

d. 7 weeks

3. C

4. G

#### **Reading Strategy**

1. a. k + 5

b. 1 and 4

c.6+7+8+9

2. a. 7 k

b. 1 and 5

c. 7 + 14 + 21 + 28 + 35

3. a. 1 and 6

b.  $\sum_{k=1}^{6} k - 2$ 

4. a. 1 and 5

b.  $\sum_{k=1}^{5} 8k + 1$ 

## 9-3 ARITHMETIC SEQUENCES AND SERIES

#### **Practice A**

1. a. 9, 9, 9, 9, 9, 9

b. 9

c. 77

2. a. 3.5

b. 28.1

3. a. -12

b. 3

4. a. Not arithmetic

5. a. -4

b.  $a_n = 33 + (11 - 1)(-4)$ 

c. -7

6. -60

7.  $\frac{22}{3}$ 

8. a. 3.7

b. 11.9, 15.6, 19.3

9. a. 0.2

b. 9.2, 9.4, 9.6, 9.8

#### **Practice B**

1. -17; -44

2. Not arithmetic

3.  $\frac{1}{2}$ ;  $\frac{33}{10}$ 

4. Not arithmetic

5. 142

6. -0.7

7. -30.1

8. 49.75

9. 17, 31, 45

10. 5, 14

11. 18, 29, 40, 51

12. 29, 23, 17, 11, 5, -1